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% To understand the predictability of coupled models focusing
on error growth

* To investigate the CGCMs behaviors in along simulation and
In short-term forecast

s NCEP CFS, CIliPAS and DEMETER

= 12 coupled GCMs having 5-9 months integrations starting from 3-15
different observed initial conditions for 2-12 calendar months in the
common 23 years from 1981 to 2003: Large number of integrations from
the variety of initial states gives us a better chance to examine the
overall skill of coupled GCMs.

- CFS, SINTEX, SNU, and UKMO GCMs, that have both forecasts and
long run dataset, is perfect candidate to investigate the influence of
model ability on forecast.

» Focusing on tropical Pacific SST
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Error growth and its implication on seasonal predictability

N - Characteristics of error growth in NCEP CFS
- Theoretical approach: “Lorenz curve” and error growth

Influence of model deficiency on forecast skill
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as a cause of decreasing predictability with respect to lead time
- Models’ coupled mode behavior in long run




ModeliDescriplioniand Experimental Design
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(Rayner et al. 2003)
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- 4 case of initial time (Feb, May, Aug, Nov)
is investigate for 10 GCMs except NASA, UH
having only May and Nov cases.

» For ENSO predictability, our study will focus on the tropical Pacific by
analyzing Nino indices



Overview of ENSO Predictability

J ENSO forecast skill of 12 CGCMs

U Influence of amplitude of SST anomalies on the forecast skill

0 ENSO phase-locking on seasonal cycle and forecast skill
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4 Index with respect to Initial Time
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U"all cases” means anomaly correlation coefficients including four cases (N=88).
Q Overall skill shows gradual decline with respect to lead month

U Feb and May IC cases show fast drop of skills than Aug and Nov cases.

U Multi-model ensembles show better skill than |nd|V|duaI model.
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U From the first 3 months, SNU show weak annual cycle.
U While MPI show rapid drop of skill after 4 to 6 lead month comparing with other models.
U These wrong climatology may have an influence on anomaly forecast field.




Sources of Forecast Error
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U Standard deviation is calculated separately for warm and cold anomalies to
consider the asymmetry

v Forecast skill with respect to SST intensity of target time

v  Forecast skill with respect to ENSO phase of initial time




Forecast Skill GINING! .4 with respect to SST| Intensity of Target Time
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= Normal case shows fast drop of skill with respect to lead month and 1st month skill is also

very low.
» Strong ENSO case with SST anomalies more than one standard deviations, shows higher

skill till 6th month.
» While weak ENSO case shows moderate skill and gradual drop with respect to lead month.
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 Based on 0.5 standard
deviation, normal, growth,

decaying phase is

distinguished during
1980-2001.

» Standard deviation is
calculated separately for
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warm and cold anomalies
to consider the

asymmetry.

<

El Nino decay

.|||||||.|||. .|.I||IIIh| .

||Imll_|"|||||||-

<

El Nino develop
La Nina develop
La Nina decay

> >

1991

1992 1993 1994

Casey ——T3
Fehyy =57
May 828797

Aug F8287,91,9496 W
Nov 1782869194 [ 87,97

El Nino
[ growth | decay | gowth |  decay |

1995 1996 1997 1998

IO

82)92,95,98 ™84,99

3

W83/92/93,98 WWB8A78899
1784,88,98,99
1783,84,98,99

1999 2000 2001

I—T0 I—3
781,85,86,89,96,00,01 ™"80,82,88,90,91,93,94,97
g5,86,89,96,00 FTTE0,81,90,91,94,95,01
T85,89,00 17780,81,83,86,90,92,93,95,96,01
185,88,95,00 FTE0;81,89,90,92,93,96,01




Forec_dst"'S'

Correlation

Correlation

All Cases

Killle

€

02{

1 0.2

0.21

N©3:4 with respect 1o ENSO Phase of Initial Time

S [ [— CERFACS

MME
DEMETER
CLIPAS

Met.Fran.

MPI

UK Met
—— —NCEP
—— —SINTEX
— —SNU

La Nina

growth

3 4 5

lead month

3 4

lead month

lead month

= Growth phase of both warm and cold events is more predictable than decay
phase.
= Normal events are far less predictable than warm and cold events.
» Therefore, fast drop of skill in February and May cases can be explained since
it includes more decaying phase having lower skill than growth phase.




O Structure of error growth in NCEP CFS

O Theoretical approach: Lorenz curve and error growth




NCERP CES fqr =

+ The NCEP Climate Forecast System (CFS) retrospective forecast

= One-tier prediction system using CGCM
=12 calendar months case during 23 years (1981-2003) with 9 months forecast
*15 ensemble members with different initial condition with lead time

Institute AGCM Resolution OGCM Resolution Initial conditions
; Atmosphere Ocean
model (GFS) 64 Levels 40 Levels | NCEP/DOE AMIP R2 et al. 2005) 9

% CFS prediction procedure (three segments IC)

_ lead month O lead month 1
Atmospheric IC: 9-13 Jan 19-23 Jan 30:31 Jan, 1-3 Feb

v

11 Jan

Ocean IC:

CGCM integration (9 months)

v

15 ensembles with 3 segments
Initial condition : Atmosphere NCEP/DOE AMIP Reanalysis 2: +2,+1,0,-1,-2 day from ocean IC
OCEAN NCEP GODAS: 11" of 21th lead month 0, 1%t of lead mont
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» Departure from HadSST climatology during 1950-1999

é )
» |t shows dramatic increase of error only occurs during first few
months and after that there is interannual variability of error but

no sign of constant error growth.
G J
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» RMS error between observed and simulated anomalies after subtracting the 23-yr
Lclimatological annual cycle of monthly mean )
~\

(. Even though the magnitude of the RMS error is smaller due to removal of the
systematic component of the error, it still shows clear spatial and seasonal structure.

» The slant to the right indicates an increase of RMS error with respect to lead month,
with a maximum value in late spring and summer starting from winter initial conditions.
This feature of forecast error is the well-known “spring barrier” .

» Different from the NINO3 index, the RMS error is dominated by the seasonality with a

time.

large maximum value in late spring to summer and a relatively weak dependence on lead




Sources of Forecast Error




NINO3 (170W-150W, 5S-5N) ., NINO12 (80-90W, 10S-eq)
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» To clarify the effect of initial condition associated with exact initial lead time, 3
segments following to the experimental design are considered.

» For example, for February 1 initial condition, 9-13 means 9Jan to 13Jan (blue), 19-23
means 19Jan to 23Jan (greed), and 30-3 means most recent initial conditions (red)

» Here, 12 initial condition cases are averaged during 1981-2003.
U

7

» Both of indices, clear separation is only found for the first one to two
kmonths lead.
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To calculate the error growth for
CFS following Lorenz’ (Lorenz
curves), which means that we will
take one month forecast and two
month forecast validated same
time and see how the error grows
with time.

Forecast error: lower bound of predictability, skill of “current” forecast
Lorenz curve: upper bound of predictability (lower bound of error), growth of
initial error defined as the difference between two forecasts valid at the same

time (Lorenz 1982)

—>estimated from monthly mean data by assembling the locus of the RMS
difference between the one-month and two-month lead forecasts for the first
target month, the RMS difference between the two-month and three-month lead
forecasts for the second target month, and so on.




Forecast Errorandilorenz Curve of Ensemble Mean in CFES
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NCEP CES: NINO3 index

Forecast error
Lorenz curve

v’ Lorenz Curve of Ensemble
mean is not growing

RMSE

0 1 2 3 4 ) 6 7 8 9
lead time

Forecast error: lower bound of predictability, skill of “current” forecast
Lorenz curve: upper bound of predictability (lower bound of error), growth of
initial error defined as the difference between two forecasts valid at the same
time (Lorenz 1982)

» Here, Lorenz curve is calculated the difference of two forecasts with same
target month and different initial time done by same model. Therefore it can be




Forecast Enonand Lorenz Curve of Each Member in CFS
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NCEP CFS: NINO3 index

| = = = Mean of 15 Forecast Error
c=—=—="- — ~ " Mean of 15 Lorenz Curve
0.8- T S0 IEREREEE Forecast Error of Each Member
/// = I Lorenz Curve of Each Member
7 i
1y 0.6- ~ — C
0 /7 v’ Lorenz curve of individual
7
0.4 ¢y - member grows as fast as Forecast
Error.
0.2
0 1 ] 1 1 ] 1 ] 1
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- At month one, fifteen different values of error correspond to fifteen members’
ensemble because each one has been integrated for different length of time.
- The growth rate of forecast error is almost same as Lorenz curve. This means

{this model has very fast error growth.
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v In January forecast and February forecast, ensemble mean is similar to each other

that is why Lorenz curveis flat. - _
v Of course, ensemble spread is increasing in both but ensemble mean remains same.

a/ However the difference between each member is quite large range even more than 4
- degree.




Forecast Error:; hdilerenz Curve of Each Member in CFS

RMSE

b 4 " . (S

_NCEP CFS
| | | v Lorenz Curve of Ensemble Mean
IS not growing

—> Initial error growth is saturated
within two months.

—> After that, error growth is
following the identical model error
for all initial cases. For NINO3 index,
it will be the error of model ENSO
dynamics.

0o 1 2 3 4 5 6 7 8 9 v LorenzCurveofIndividual
lead time Member grows as fast as Forecast
Forecast Error of Ensemble mean Error.

Lorenz Curve of Ensemble mean
- == = Mean Forecast Error of Each Member > CFS has Iarge ensemble spread

" Mean Lorenz Curve of Each Member due to instability of coupled system.

v  Biggest improvement of ENSO prediction can be obtained by cutting the
first month forecast error.




NCEP CFS ECMWEF UKMO

CFs ECMWF UKMO
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Forecast Error of Ensemble Mean
Lorenz Curve of Ensemble Mean
= = = Mean of Forecast Error of Each Member
Mean of Lorenz Curve of Each member

v  This is the not the property of only CFS, but all the three models here show
flat Lorenz curve for ensemble mean.

v However, ECMWF model seem to have more potential to improve prediction,
because the Lorenz curve of individual members does not grow as fast as
forecast error curve.
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The Influence of Model Deficiency on the Forecast Skill

[ Forecast skill as a function of ensemble size in NCEP CFS

O Forecast error with respect to lead month

O Model errors in NCEP CFS focusing on ENSO events
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Anomaly correlation coefficients

1 month 3 month 6 month 9 month

Jan 0.96 (Dec) 0.92 (Oct) 0.90 (Jul) 0.80 (Apr)
Apr 0.92 (Mar) 0.82 (Jan) 0.76 (Oct) 0.70 (Jul)
Jul 0.83 (Jun) 0.78 (Apr) 0.55 (Jan) 0.38 (Oct)
0.96 (Sep) 0.89 (Jul) 0.72 (Apr) 0.55 (Jan)
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Correlation coefficients
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- Forecast skills are calculated for all possible combinations with respect to ensemble size
- Mean skill denotes average of correlation coefficients for all possible combinations
- Range of skill means highest skill minus lowest skill
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Correlation coefficients

Lead Month

15member
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Lead Month
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- The icrease of lead month give us more obvious statistics showing constant drop of skill
with increase of ensemble spread for mean, high and low skill case.




SST anomalies
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El Nino (4 cases)
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- To investigate the property of this model without influence of initial condition,

R oy
long run forecast




Sources of Forecast Error
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ation of SST  Anomalies

Standard Deviation of NINO 3 Index

— HadSST
50 years (1950-1999)

— CFS 52-yr run
50 years (3'9-52th)

SST anomalies
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Calendar Month

- Observation has maximum variance in December and weak variance in spring and
summer, while model show larger variance in March and August different from observation.




SST anomalies
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» Model has so regular and long ENSO cycle with 5to 6 year period.
» Associated with this long life cycle, the peak of ENSO is frequently shown in summer time.
» Therefore, this model shows large error during

summer.




— Observation
— CFSlong run

SST anomalies

Jan Jul Jan Jul Jan

(=1) (=1) (0) (+1) (+1)

» For observation, Warm composite (82/83, 86/87, 91/92, 97/98) - Cold composite (84/85, 88/89,

98/99, 99/00)
» For CFS 52-yr run, 7 cases for El Nino and 12 cases for La Nina based on one standard

deviation definition of DJF Nino3 index

= As expected, simulated ENSO cycle show early and slow evolution
» And it has wrong peak in summer and winter peak is weaker than observed.
» Decay looks more similar to observation but it is also slowly progressing than observed beca

use the peak of ENSO is smaller than observation.
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» Warm composite (82/83, 86/87, 91/92, 97/98) - Cold composite (84/85, 88/89, 98/99, 99/00)
k> Dashed lines are 9 months forecast warm minus cold composite of six initial condition cases.
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» For initial few months, simulated ENSO show good accordance with observed feature.
» However, after that, slow evolution of this model is clear with respect to lead time, and it gene
rates the phase shifted feature in previous plot.
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 202-year simulation « 9 members
» Analyzing last 200 years * May, Nov IC

(200-yr climatology) Luo et al. 2005
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« 6 months lead Kug et al. 2005
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S o

UKMO SINTEX SNU

warm
lcomposi

Jan ' Jul ' Jan ' Jul ' Jan -Jzan ' Jul ' Jan ' Jul ' Jan -Jzan ' Jul ' Jan Jul ' Jan
-1 (-1) () (+1) (1) (-1 (-1) © (+1) (+1) (-1) (-1) © (+1) (+1)
Observation
80-yr long run long run 200-yr long run 140-yr long run
10 case El Nino =—MAY forecast 34 case El Nino 24 case El Nino
10 cases La Nina NOV forecast 32 cases La Nina 26 cases La Nina

Obs.: Warm composite (82/83, 86/87, 91/92, 97/98) - Cold composite (84/85, 88/89, 98/99, 99/00)




Summary (1)

= Overall forecast skill in 12 coupled GCMs is assessed. Strong ENSO cases
are more predictable than weak cases. Growth phase of both warm and cold
events is more predictable than decay phase. Normal events are far less
predictable than warm and cold events.

= In ENSO forecasts in NCEP CFS, constant phase shift with respect to lead
month is so clear by using monthly forecast composite data. And this feature is
related with model properties having long life cycle with different peak shown in
long run case.

= In SINTEX, SNU, UKMO GCM, common behavior both in long run and forecast is
also investigated.

» Systematic errors of couple models is major factor in limiting predictability:
mean error, phase shift, different amplitude, and wrong seasonal cycle, etc.

» Therefore, investigation of the model capability in long simulation is also
important to understand the behavior of forecast error. .




Summary (2)

= Error growth of coupled GCMs is investigated.

- In coupled GCMs, initial error growth is saturated within two months. After
that, error growth is following the identical model error for all initial cases.
Therefore, Lorenz curve of ensemble mean is not growing.

- Lorenz curve of individual member grows as fast as forecast error because
CFS has large ensemble spread due to instability of coupled system in CFS.

- ECMWF seem to have more predictability, because the Lorenz curve of
individual members does not grow as fast as forecast error curve.

» Finally we can draw the same conclusion as Lorenz did for weather
forecasting, which is that the best way to improve the weather forecast beyond
day 1 is by improving the first day forecast (Lorenz 1982). Similarly, biggest
improvement of ENSO prediction can be obtained by reducing the first month
forecast error.
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» Reconstructed data with respect to lead time (monthly forecast
composite)




